
A Framework for Manipulating Vacuumed Data in

Temporal Relational Database

 Mohammad Shabanali Fami Elham Shabanali Fami, Mohammad Ali Montazeri Mohammad Taghi Isaai

 Islamic Azad University of Arak Isfahan University of Technology Sharif University of Iran

 Arak,Iran Isfahan, Iran Tehran,Iran

Abstract— The Temporal database is one of the databases that

manipulate by append-only policy instead of updating in-place.

The data in these databases have two main features: valid-time

and transaction-time. Since, the data aren't deleted in temporal

database; instead they are increasingly expanded and grown up,

it's necessary to adopt a mechanism for controlling the volume

and capacity of the database. In such a database a large quantity

of the information are fetched less, while some are fetched more,

so that it is essential to use a vacuuming data method as well as

physical deletion technique to control the database volume. In the

present research, we introduce an intelligent vacuuming system

based on an unintelligent model of SDVMT which attempts to

vacuum the data based on the extent of data importance,

transaction time and valid time using a distributed middleware

platform. The intelligent model increased the accuracy of the

unintelligent model. This model behaves intelligently by learning

from the behavior of the system administrator, end user and the

server's performance. Therefore, the importance of data is

identified by analyzing the behavior of end users. In such a

process, the servers are classified based on their performance by

continuous monitoring of servers and observing the behavior of

system administrators in data vacuuming.

Keywords-temporal databases, machine learning, database

models, database design, modeling and management.

I. INTRODUCTION

Temporal database is one of the most common types of
databases in that its data have time references. Among many
different applications of these databases, Portfolio
management systems, Accounting, Banking, Aerology systems
and Scheduling can be mentioned. In temporal databases in
contrast with other databases, data will never remove from
database. It means that temporal database uses append-only
policy instead of update-in-place policy of other databases [1].

Temporal databases are tools for information storage and
retrieval with the temporal nature [1]. While temporal data
have infinite volume, computer systems due to their restriction
in resources such as memory, calculation resources and
communication resources can store and retrieve finite data.
This topic needs specific approaches to deal with temporal
data.

Jensen introduced temporal data vacuuming [2]. Skyt
studied data management methods for physically removed

data [3] and suggested a framework for vacuuming temporal
data [4]. Roddick’s aim was preventing some relations from
removal in vacuuming process, so he searched about schema
versioning [5] [6]. He also did researches about data mining
on temporal database systems [7]. Jensen presented a
framework for vacuuming temporal data. In this framework he
vacuumed data base on organization's rules [8]. Grandi studied
schema versioning on object oriented databases [9]. Skyt
presented a method for removing data based on their features
[10]. The whole of these methods classify data into active and
inactive categories. Inactive data that stored in lateral storage
devices always create costly queries with a lot of problems
associated with time and availability.

On the other hand, Temporal databases are very huge
because of the append-only politic. When you never delete any
tuple from database the volume of database will increase by
time. Thus this kind of database is a very large scale database.
In this field there is a lot of research that shows how to act on
this kind of database.

Today we see the SAN storage systems developed in
hardware and we see a lot of developments in software like
Google Big Table, Cassandra and so on to deal with this issue.
These developments show that there is a big demand to have a
larger data storage system. In this paper we did not consider
having an expansive database; rather, we are demonstrating
why we didn’t use these developments and why our idea is
needed for temporal databases.

 As we know, E. Codd invented the relational model for
database management systems [11]. This model is very
common and the important point of the model that we
consider is that it is row-oriented. In 2004 Google tried to
develop a new database management system named Big Table.
The major thrust in this kind of database was the column-
oriented feature [12]. For using distributed database the idea
of column-oriented database developed. It's a very good way
that is used in Big Table and Cassandra [13], but there are
some points that should be considered about differences
between temporal database and other kinds of big databases.

When we are using such database management systems we
store data column by column. The nature of temporal data is
not similar to this idea because temporal database is a
collection of tuples that each one labeled by time stamped and

its attributes need to fetch together. If some parts of data are
fetched and some are not fetched, the data will not be useful.
Thus we can't use the C-store base database management
system to manipulate temporal database, thus, it's necessary to
use a model based on a row-oriented model. All of the
research on temporal database shows that they only use a row-
oriented foundation.

When we see the benefits of memory Hierarchy we try to
use this idea in temporal database management to deal with
memory limitations. Thus, at first we proposed a model that is
combined of a distributed system middle ware and a memory
hierarchy with new level conceptual [14]. SDVMT that is
contracted of Semi-Distributed Vacuuming Model on
Temporal Databases, contrary to previous methods uses three
levels for vacuuming temporal data. The first being active data
level. The data in this level is very critical and fetched with
more frequents. The second level is vacuumed data, the data in
this level is not very critical but the data in this level will store
on the distributed network of systems. Therefore, this level has
expanded storage. The third level is offline data. The data in
this level is rarely fetched and this level is the same as inactive
data in old models. With the wide storage space in level two
this method can serve more requests. This method may face a
storage limitation but this will posteriorly accrue unlike old
models[15].

For increasing the benefits of the SDVMT model we
present an intelligent model that we named as IVMT as
abbreviation of Intelligent Vacuuming Model on Temporal
Databases. The difference between these two models is the
method of selecting data to be assigned to a particular level.
Another difference is the data can migrate in IVMT. When we
use a better method to know which data will fetched more, our
model will work better. User desired data is different each
time. Thus in IVMT model data can migrate between levels.
This will improve the SDVMT model[15].

In this paper, first we briefly introduce SDVMT model in
section II. Then IVMT model will be presented in section III.
Then IVMT model will be trained to target the user's behavior
as presented. This model is based on allotting more significant
data to more powerful servers. In next section performance
investigation of this model will be done by referring to
performance of methods that is used in the memory hierarchy
[14]. We show the comparison between SDVMT and IVMT
model by logical sentences, although this is very clear.

II. SDVMT MODEL

In all CM methods, some parts of data have been
physically removed from the database and partitioned the data
in active and inactive parts. Inactive data is maintained in
lateral storage devices, while active data will be remained in
the online system. In this method, inactive data will removed
from online system physically. The important point is this
division based on organizational rules. For example in a
hospital system, records of patients that were admitted two
years prior will be inactive. This division is not a very good
method because some patients may be local and some are not
local. Most likely, the local patients will come back and their
related data would have been archived. This model does not
have good perception about which data should be active and

which should be in-active. This model has not enough
flexibility to perceive changes that may accrue in the user’s
desired data[15].

The major issue concerning CM models is that these
models need manual support to retrieve data from inactivated
data. This is indeed costly for organizations because of
technology changes that will require organizations to pay for
experts to work on the new technology. When manual support
is needed, another problem is the time required for support. An
interval of time is needed to seek the inactive data, as well as
to activate the inactivated data prior to conducting a search of
the inactive data. This is a time-consuming and inefficient
method to support critical applications in a hospital
setting[15].

The most important problems of the CM Methods were
incapability for answering most of the temporal queries and its
high response time for other temporal queries. SDVMT
method shown in Fig. 1 has been designed to solve these
problems with the objective of optimum utilization of
resources. In this model, the concepts of distributed systems
are used to improve on pre-designed models[15].

Figure 1. Proposed model for the vacuuming temporal database. In this

model, vacuum will be kept actively in vacuum servers.

In this system, the temporal vacuums data rather than
being kept in inactive storage resources will be kept in on-line
servers. Since most organizations usually provide the
appropriate hardware infrastructure that does not allow for
optimum use, presenting this model provides a method for
utilizing the maximum power of resources to troubleshoot
problems concerning serving the users that need information
on inactive data[15].

In fact, SDVMT suppose that there is a network in
organization that is not too far-fetched. In organizations we
always have a lot of PCs that are idle and some busy servers.
The level one in the SDVMT model is a server that is costly
and limited, and the second level is the idle PCs in the
network. These PCs have storage that is needed. For example,
the admission's PCs are idle for long periods and only use less
than five percent of the processor and storage. Thus, we use a
middleware that connects these PCs together by socket
connection. Now we have the second level of vacuumed data.
This level has a wide storage and this is not costly to the
organization. The level three is the same as inactive storage in
CM models[15].

The main difference between SDVMT method and CM
methods is in optimum usage of organization resources to
deliver better services to applicants. More resources are
possessed in the SDVMT method. Parallel seeking in
vacuums, and scalability of it that obtained from its distributed
nature, make higher accountability for this method. If required
resources of SDVMT method were not provided, the
organization would have to use CM methods. In this situation,
however some part of data will be kept inactive, there are
more resources to return vacuums and maintain them online
for organization[15].

For instance, consider a small hospital that has 20
workstations with normal capabilities along with its online
server. This hospital can use its workstations as servers for
vacuums. These workstations always have some amount of
computational capacity and free storage that can be used for
storing and retrieving vacuums data. It is obvious that there
are limitations concerning these resources, and after awhile the
organization will need inactive storage. Therefore, optimum
usage of resources that were costly for the organization, the
severity of the problem and the number of inactive vacuums
will reduce[15].

In the SDVMT model, rather than lateral storage devices,
data will be stored actively in some servers called vacuum
servers. Vacuum servers are always slower and weaker than
online server but they are much stronger than the manual
supports methods. When a temporal query arrives, it is sent to
the related vacuum server. Then the online server gathers and
combines all results and answers the applicant[15].

III. IVMT MODEL

IVMT is the abbreviation of Intelligent Vacuuming Model
on Temporal Databases. The goal of designing this model is to
increase the performance of SDVMT model by directing more
significant data to more powerful servers. As it is displayed in

Fig. 2 this model has three types of intelligence. Firstly, this
system is intelligent concerning the user's behavior by
checking the user's desired data. Secondly, the system logs the
actions of the administrator for automatic migrating data.
Thirdly, the system is intelligent about the changes that accrue
in server performance. Server performance will change
because of data traffic, hardware problems and operating
system's fails. So this is very important in identifying which
server is important at the time.

In this model we suppose that we have a data atom. Data
atom is the smallest significant data in system. Data atom may
be a tuple. Data atoms have an integer variable that values
increase by user visiting it. So the system will know which
data is more important for users. As time passes, this variable
decreases. This means that over time the importance of data
decreases. Thus, only the newer data will have a high value in
this variable and will demonstrate to be more important. Data
atoms have two variables for saving the transaction time of
data, as well as two variables to save the valid time of data. In
this model the administrator can use a command to migrate
data from a server to another server by organizational roles.
Every server has an indicator that shows how powerful the
server is. This indicator is based on network latency of node to
the core, node processing usage and free memory in node. In
time this indicator will refresh.

Thus, the system knows about user's behavior, the level of
power of the server and the behavior of the administrator. By
using the neural network engine that is embedded in this
model, the system learns the behavior of users and
administrators. This model system also knows about the
server's status. Thus some data will automatically migrate to
other servers to increase performance. This model can uses
some open source systems such as hyper table, Hadoop and
Hbase to develop. But this paper is only considering
introduction of this model.

Figure 2. IVMT model block diagram. The IVMT model has a middleware that composed of

seven parts. These parts show in above diagram.

A. IVMT Model details

Temporal data have two temporal dimensions, valid time
and transaction time [16]. The importance of each datum is
determined by considering the final user's usage. In this paper,
the smallest in frangible units of data is called data atom. With
regard to the more applicable architecture of BCDM [17] [18],
in temporal data models it can be assumed that a data tuple is a
data atom. Each data atom has a temporal information header
for its data that consists of data valid interval, transaction
interval and data significance. Data significance will be
calculated regarding user's usage of that data. By retrieving
data, its significance will increment by a unit, inserting a tuple
add a unit to its significance and deletions increment it. Also
by updating a tuple, its significance will increase a +1 unit. As
time passes, for each interval distance equal to t, the data's
importance will decrease by a unit. K is another parameter in
the data header and it specifies the number of data usage to
answer a user's question.

It is assumed that temporal data are inputs of artificial
neural network. Start valid time, valid time distance, start
transaction time, transaction time distance and data
importance are inputs of neural network. Stochastic Gradient
Descent algorithm is used to train a neural network to support
online training [19] [20]. As time passes, the data obtained
from user behavior will be used for neural network inputs and
it will be trained. In this supervised learning method, it is
determined which data atoms are partnered in answering a
user's question. In such a way, k is network's output and other
parameters of data header are its inputs. In different time slices
the system determines which data should be kept in the current
server and which data should be transferred to other servers.

With the aim of proving the viability of IVMT method's
performance, first the model that is shown in Fig. 1 with three
levels of servers must be considered. Then this model can be
compared with memory hierarchy. It was practically proved
that more applicable data should be maintained in quicker
memories, so more applicable information will be maintained
in the more powerful server in the IVMT method.

B. Founding a server responsible for maintaining the data in

IVMT model

In this area we were faced with unsupervised learning. An
index determined the amount of partnership of each data atom
in answering a user's query which is obtained from the neural
network. K stands for the algorithm used to cluster data to
classes whose number is equal to the number of vacuum
servers plus one [21] [22]. Each cluster's center can be
calculated, therefore, the Gaussian distance of data that do not
belong in a cluster from the cluster's center can be obtained.
Data will be assigned to a cluster with minimum Gaussian
distance and the responsible server for each datum will be
obtained.

IV. A COMPARISON BETWEEN SDVMT METHOD AND

MEMORY HIERARCHY

With the goal of proving the viability of a method's
performance, first the model that is shown in Fig. 1 with three

levels of servers will be considered. Then this model can be
compared with memory hierarchy using Table I. It was
practically proved that more applicable data should be
maintained in quicker memories, so more applicable
information will be maintained in the more powerful server in
the method. The conclusion of this comparison is the
superiority of IVMT model than SDVMT model.

In the SDVMT method, users send their ordinary and
temporal queries to the online server and wait to be answered.
On the other hand, in memory hierarchy the operating system
sends arithmetic queries and retrieves information from
RAM or Hard Disk to the central processing unit and wait to
be serviced. The CPU will answer quickly to queries from its
memory, but if the query needs to retrieve information from
RAM memory or Hard Disk, the CPU will take some time to
transfer information from them to its memory. This time will
be referred to as transfer time. Also in the IVMT model, if a
temporal query arrives, it needs an online server to gather data
from the vacuum server or archive to process them.

In the SDVMT method, vacuum servers make middle
memories between online servers and archives to keep
temporal data. In memory hierarchy, RAM acts as a middle
memory between the CPU and the disk. Vacuum servers
deliver services more quickly than archives, just as RAM in
the memory hierarchy has a higher speed in accessing data
than a disk. Considering cost, maintaining information on disk
is less costly than on RAM. Additionally, vacuum servers are
more costly than archives.

In the SDVMT method, the archive has a high capacity to
store data and is also less costly than other servers, but its
swiftness in accessing data is less. In memory hierarchy, disk
has more storage capacity to store information. Disk is a less
expensive memory than other levels of memory in the
hierarchy. With regard to cost, Disk is less expensive than
other levels.

The memory hierarchy has existed for a long time from the
early usage of computer systems and its good performance has
been proven practically. In this research, by using this proved
feature, a method for responding to the queries was presented.
With respect to the memory hierarchy, when a request for
retrieving data is received, at first the data stored in processor
memory, such as cache memory, is searched. Next, the data in
the main memory will be searched and last, if there is failure
in these steps, the data stored in the hard disk will be searched.

In the SDVMT method, at first the data stored in the online
server will be searched, then the data stored in vacuum servers
will be searched and, finally, archived data will be chosen to
search. Since, In terms of memory and speed of response for
each of these sectors, the proposed model is equivalent to the
memory hierarchy. The IVMT method, similar to the methods
used by hierarchical memory in the computer systems, seems
to have much better performance than a system that only
worked with online server and archived data. These kinds of
systems are similar to computer systems without the RAM
memory that search a slow hard disk to answer each request.
Consequently, this architecture slows down the system and is
inefficient.

TABLE I. A COMPARISON BETWEEN SDVMT METHOD AND MEMORY HIERARCHY

SDVMT Method Memory Hierarchy

Dataset level Access

Time

Storage

Capacity

Cost Memory level Access

Time

Storage

Capacity

Cost

Level 1

Online Server
Very High Very Low Very

High

SRAM, CACHE and

Register
Very High Very Low Very High

Level 2

 Vacuum Server
High Low High DRAM&RAM

 Memory
High Low High

Level 3

Archive
Very Low Very High Low Magnetic disk Medium High Medium

An average of

 Data volume
About Exabyte and increase as time

passed

An average of

 Data volume
Some multiple of storage capacity

Since from the early computerization memory hierarchy
was used, viability of its performance is obvious and has been
proven. Using the SDVMT method a schema like memory
hierarchy approach can be considered as a solution for
temporal database systems. Due to insufficient resources in the
SDVMT model, efficiency will reduce again after some time.
To resolve this problem, intelligence parameter was added to
the SDVMT method. Therefore the powerful servers are
responsible to store more important data. By using this
method, the problem is resolved.

V. CONCLUSIONS

In this study, the CM methods for vacuuming data were
reviewed. The SDVMT method improved CM methods by
using existing idle resources in the organization but when
there were insufficient amount of resources, its response to
temporal queries decreased. In the CM models, there are two
servers that will be named as active and inactive servers. Data
that is stored in an active server, needs less service time but
the other data stored in inactive servers needs more service
time. Ordinary queries need active server's data while
temporal queries need data from active and inactive servers.
The result was that ordinary queries need less time to be
served, but for some parts of the temporal queries that need
data from inactive servers, more service time is required. The
server which serves a user query in less time has better
performance. Thus the CM model’s performance for ordinary
queries is good but its performance concerning temporal
queries with data on inactive servers is not satisfying.

The IVMT method has three kinds of servers which
include online server, vacuum servers and inactive servers.
Online server response time is the least. Vacuum server
response time is a lot more than online server but inactive
servers have longer response time. In the IVMT method, more
required data by the final users have more importance. In this
method, more important data will be stored on the server with
higher performance and vice versa. In this method, ordinary
queries will be answered by the online server just as CM
methods, and causes less service time and higher performance
for the method in this case. Temporal queries should be
answered by all three levels of servers. If the query needs data
from the online server, service time will be the least and
performance will be satisfying. When it needs data from
vacuum servers, its response time is a little more but less than

the online server. In this situation the performance of the
model is less than the previous condition. As a result, this
method performance in this case is good but just a little less
than the online server situation. The third position occurs
when the temporal query needs data from inactive servers. In
this method it was assumed that more important data are
stored in more efficient servers and user's requests need more
important data. This important data are in more efficient
servers so that in inactive servers there is a little important
datum there, and for these rare data requests, performance is
less. If the user needs less important data, inactive servers
should be searched so the performance will decrease and the
response time will increase. As it was illustrated, just for
temporal query from unimportant data the performance is like
CM models and for all other situation it works better.

If data importance is increasing, firstly this method is like
CM methods, but as time passes this unimportant data will be
requested more often and its importance will be increased. At
that point the data will transfer to vacuum servers with higher
performance. After a period of time, the systems efficiency
will increase. In summary, IVMT model is satisfactory in all
conditions except for the temporal request for unimportant
data. When these types of requests repeat, importance of data
will modify. Therefore, by using the online learning method,
after a period of time the performance increases. In the end,
its performance is weak concerning unimportant data requests.

VI. FUTURE WORKS

This paper just introduces a framework for manipulating
vacuuming in temporal database. For developing this
framework we can use some open source systems same as
Hadoop and Hbase. Before the implementation of this
framework we should implement the learning cores. In this
core the main point is which feature should be selected. Once
the selection is made we can use a neural network to learn the
network by using data originating from the administrator and
user behaviors. We should then define the instruction sets that
nodes in this network will use.

ACKNOWLEDGMENT

We wish to thank everyone who helped us complete this
dissertation. Without their continued efforts and support, we
would have not been able to bring our work to a successful
completion. We specially thank Mrs Kathryn L.Chavez from

Smart Worldwide Solution Pros in Oklahama City, Oklahama,
USA, who helped us for editing this research paper.

REFERENCES

[1] C. S. Jensen, “Temporal Data Management” IEEE Trans. Knowledge and Data

engineering, Vol. 11, No. 1, pp. 36-44, 1999.

[2] C. S. Jensen, “Vacuuming,” In Proc. The TSQL2 Temporal Query Language,

Kluwer, pp. 447-460, 1995

[3] J. Skyt and C. S. Jensen, “Managing Aging Data Using Persistent Views,” In Proc.

Int. Conf. on Cooperative Information Systems, Israel, pp. 132-137, 2000

[4] J. Skyt and C. S. Jensen and L. Mark, “A foundation for vacuuming temporal

databases” ELSEVIER, Data & Knowledge engineering, Vol. 44, No. 1, pp. 1-29,

2003.

[5] J. F. Roddick, “Schema Versioning,” In Proc. The TSQL2 Temporal Query

Language, Kluwer, pp. 425-446, 1995

[6] J. F. Roddick, “Schema Vacuuming in Temporal Databases” IEEE Trans.

Knowledge and Data engineering, Vol. 21, No. 5, pp. 744-747, 2009.

[7] J. F. Roddick and M. Spiliopoulou, “A Survey of Temporal Knowledge Discovery

Paradigms and Methods” IEEE Trans. Knowledge and Data engineering, Vol. 14,

No. 4, pp. 750-767, 2002

[8] C.S. Jensen and L. Mark, “A Framework for Vacuuming Temporal Databases,”

Technical Report CS-TR-2516, Univ. of Maryland, College Park, 1990

[9] F. Grandi and F. Mandreoli, “A Formal Model for Temporal Schema Versioning

in Object-Oriented Databases,” ELSEVIER, Data & Knowledge engineering, Vol.

46, No. 2, pp. 123-167, 2003.

[10] J. Skyt, C.S. Jensen, and T.B. Pedersen, “Specification-Based Data Reduction in

Dimensional Data Warehouses,” In Proc. Int. Conf. on Data Eng, USA, p. 278,

2002.

[11] E. F. Codd, A relational model of data for large shared data banks,

Communications of the ACM journal, vol 13, no 6, pp 377-387, 1970.

[12] F. Chang and , Bigtable: a Distributed storage system for structured data, ACM

Transactions on computer systems, Vol. 26, No 2,Article no 4, 2008.

[13] A. Lakshman, Cassandra- A Decentralized Structured Storage System, Facebook,

2008.

[14] Koltsidas, Ioannis and Muller, "Sorting hierarchical data in external memory for

archiving," In Proc. VLDB Endow., Vol. 1,No 1, pp. 1205-1216, Aug, 2008.

[15] M. S. Fami, E. S. Fami, M. Montazeri and M. Isaai, "Semi-Distributed

Vacuuming Model on Temporal Database (SDVMT)", Database Systems Journal,

vol III, no 4, pp 73-79, 2012.

[16] R. Sondgrass and I. Ahn, " A Texonomy of time in databases," In Proc. ACM

SIGMOD int. Conf. on Management of data., New York, USA, pp. 236-246,

May, 1985.

[17] C.S. Jensen, R. Sondgrass and M. Soo,"The TSQL2 Data Model," Kluwer

Academic Publishers, pp. 157-240, 1995.

[18] C.S. Jensen, M.D. Soo and R. Sondgrass, "Unifying temporal data model via a

conceptual model," Information System, Vol. 11, no. 1, pp. 513-547, 1994.

[19] Bottou and Leon, "Online Algorithms and Stochastic Approximations,"

Cambridge University Press, Cambridge, UK, 1998.

[20] D.P. Bertsekas, A. Nedic and A.E. Ozdaglar, "Convex Analysis and

Optimization," Athena Scientific, 2003.

[21] D. Aloise, A. Deshpande, P. Hansen and P. Popat, " NP-hardness of Euclidean

sum-of-squares clustering," Springer Machine Learning, Vol. 75, no. 2,pp. 245-

248, 2009.

[22] A. Choromanska and C. Monteleoni, "Online Clustering with Experts," In Proc.

Of 15th Int. Conf. on Artificial Intelligence and statistics (AISTATS), 2012.

