
A Framework for Manipulating Vacuumed Data in 

Temporal Relational Database 
 

 

 

     Mohammad Shabanali Fami                   Elham Shabanali Fami, Mohammad Ali Montazeri                 Mohammad Taghi Isaai 

  Islamic Azad University of Arak                            Isfahan University of Technology                               Sharif University of Iran 

                 Arak,Iran                                                                   Isfahan, Iran                                                       Tehran,Iran 

 

 

 

  
Abstract— The Temporal database is one of the databases that 

manipulate by append-only policy instead of updating in-place. 

The data in these databases have two main features: valid-time 

and transaction-time. Since, the data aren't deleted in temporal 

database; instead they are increasingly expanded and grown up, 

it's necessary to adopt a mechanism for controlling the volume 

and capacity of the database. In such a database a large quantity 

of the information are fetched less, while some are fetched more, 

so that it is essential to use a vacuuming data method as well as 

physical deletion technique to control the database volume. In the 

present research, we introduce an intelligent vacuuming system 

based on an unintelligent model of SDVMT which attempts to 

vacuum the data based on the extent of data importance, 

transaction time and valid time using a distributed middleware 

platform. The intelligent model increased the accuracy of the 

unintelligent model. This model behaves intelligently by learning 

from the behavior of the system administrator, end user and the 

server's performance. Therefore, the importance of data is 

identified by analyzing the behavior of end users. In such a 

process, the servers are classified based on their performance by 

continuous monitoring of servers and observing the behavior of 

system administrators in data vacuuming.  

Keywords-temporal databases, machine learning, database 

models, database design, modeling and management. 

I.  INTRODUCTION  

Temporal database is one of the most common types of 
databases in that its data have time references. Among many 
different applications of these databases, Portfolio 
management systems, Accounting, Banking, Aerology systems 
and Scheduling can be mentioned. In temporal databases in 
contrast with other databases, data will never remove from 
database. It means that temporal database uses append-only 
policy instead of update-in-place policy of other databases [1]. 

Temporal databases are tools for information storage and 
retrieval with the temporal nature [1]. While temporal data 
have infinite volume, computer systems due to their restriction 
in resources such as memory, calculation resources and 
communication resources can store and retrieve finite data. 
This topic needs specific approaches to deal with temporal 
data.  

Jensen introduced temporal data vacuuming [2]. Skyt 
studied data management methods for physically removed 

data [3] and suggested a framework for vacuuming temporal 
data [4]. Roddick’s aim was preventing some relations from 
removal in vacuuming process, so he searched about schema 
versioning [5] [6]. He also did researches about data mining 
on temporal database systems [7]. Jensen presented a 
framework for vacuuming temporal data. In this framework he 
vacuumed data base on organization's rules [8]. Grandi studied 
schema versioning on object oriented databases [9]. Skyt 
presented a method for removing data based on their features 
[10]. The whole of these methods classify data into active and 
inactive categories. Inactive data that stored in lateral storage 
devices always create costly queries with a lot of problems 
associated with time and availability. 

On the other hand, Temporal databases are very huge 
because of the append-only politic. When you never delete any 
tuple from database the volume of database will increase by 
time. Thus this kind of database is a very large scale database. 
In this field there is a lot of research that shows how to act on 
this kind of database.  

Today we see the SAN storage systems developed in 
hardware and we see a lot of developments in software like 
Google Big Table, Cassandra and so on to deal with this issue. 
These developments show that there is a big demand to have a 
larger data storage system. In this paper we did not consider 
having an expansive database; rather, we are demonstrating 
why we didn’t use these developments and why our idea is 
needed for temporal databases. 

  As we know, E. Codd invented the relational model for 
database management systems [11]. This model is very 
common and the important point of the model that we 
consider is that it is row-oriented. In 2004 Google tried to 
develop a new database management system named Big Table. 
The major thrust in this kind of database was the column-
oriented feature [12]. For using distributed database the idea 
of column-oriented database developed. It's a very good way 
that is used in Big Table and Cassandra [13], but there are 
some points that should be considered about differences 
between temporal database and other kinds of big databases. 

When we are using such database management systems we 
store data column by column. The nature of temporal data is 
not similar to this idea because temporal database is a 
collection of tuples that each one labeled by time stamped and 



its attributes need to fetch together. If some parts of data are 
fetched and some are not fetched, the data will not be useful. 
Thus we can't use the C-store base database management 
system to manipulate temporal database, thus, it's necessary to 
use a model based on a row-oriented model. All of the 
research on temporal database shows that they only use a row-
oriented foundation. 

When we see the benefits of memory Hierarchy we try to 
use this idea in temporal database management to deal with 
memory limitations. Thus, at first we proposed a model that is 
combined of a distributed system middle ware and a memory 
hierarchy with new level conceptual [14]. SDVMT that is 
contracted of Semi-Distributed Vacuuming Model on 
Temporal Databases, contrary to previous methods uses three 
levels for vacuuming temporal data. The first being active data 
level. The data in this level is very critical and fetched with 
more frequents. The second level is vacuumed data, the data in 
this level is not very critical but the data in this level will store 
on the distributed network of systems. Therefore, this level has 
expanded storage. The third level is offline data. The data in 
this level is rarely fetched and this level is the same as inactive 
data in old models. With the wide storage space in level two 
this method can serve more requests. This method may face a 
storage limitation but this will posteriorly accrue unlike old 
models[15].  

For increasing the benefits of the SDVMT model we 
present an intelligent model that we named as IVMT as 
abbreviation of Intelligent Vacuuming Model on Temporal 
Databases. The difference between these two models is the 
method of selecting data to be assigned to a particular level. 
Another difference is the data can migrate in IVMT. When we 
use a better method to know which data will fetched more, our 
model will work better. User desired data is different each 
time. Thus in IVMT model data can migrate between levels. 
This will improve the SDVMT model[15].  

In this paper, first we briefly introduce SDVMT model in 
section II. Then IVMT model will be presented in section III. 
Then IVMT model will be trained to target the user's behavior 
as presented. This model is based on allotting more significant 
data to more powerful servers. In next section performance 
investigation of this model will be done by referring to 
performance of methods that is used in the memory hierarchy 
[14]. We show the comparison between SDVMT and IVMT 
model by logical sentences, although this is very clear. 

II. SDVMT MODEL 

In all CM methods, some parts of data have been 
physically removed from the database and partitioned the data 
in active and inactive parts. Inactive data is maintained in 
lateral storage devices, while active data will be remained in 
the online system. In this method, inactive data will removed 
from online system physically. The important point is this 
division based on organizational rules. For example in a 
hospital system, records of patients that were admitted two 
years prior will be inactive. This division is not a very good 
method because some patients may be local and some are not 
local. Most likely, the local patients will come back and their 
related data would have been archived. This model does not 
have good perception about which data should be active and 

which should be in-active. This model has not enough 
flexibility to perceive changes that may accrue in the user’s 
desired data[15].  

The major issue concerning CM models is that these 
models need manual support to retrieve data from inactivated 
data. This is indeed costly for organizations because of 
technology changes that will require organizations to pay for 
experts to work on the new technology. When manual support 
is needed, another problem is the time required for support. An 
interval of time is needed to seek the inactive data, as well as 
to activate the inactivated data prior to conducting a search of 
the inactive data.  This is a time-consuming and inefficient 
method to support critical applications in a hospital 
setting[15].  

The most important problems of the CM Methods were 
incapability for answering most of the temporal queries and its 
high response time for other temporal queries. SDVMT 
method shown in Fig. 1 has been designed to solve these 
problems with the objective of optimum utilization of 
resources. In this model, the concepts of distributed systems 
are used to improve on pre-designed models[15]. 

 
Figure 1.   Proposed model for the vacuuming temporal database. In this 

model, vacuum will be kept actively in vacuum servers.  

In this system, the temporal vacuums data rather than 
being kept in inactive storage resources will be kept in on-line 
servers. Since most organizations usually provide the 
appropriate hardware infrastructure that does not allow for 
optimum use, presenting this model provides a method for 
utilizing the maximum power of resources to troubleshoot 
problems concerning serving the users that need information 
on inactive data[15]. 

In fact, SDVMT suppose that there is a network in 
organization that is not too far-fetched. In organizations we 
always have a lot of PCs that are idle and some busy servers. 
The level one in the SDVMT model is a server that is costly 
and limited, and the second level is the idle PCs in the 
network. These PCs have storage that is needed. For example, 
the admission's PCs are idle for long periods and only use less 
than five percent of the processor and storage. Thus, we use a 
middleware that connects these PCs together by socket 
connection. Now we have the second level of vacuumed data. 
This level has a wide storage and this is not costly to the 
organization. The level three is the same as inactive storage in 
CM models[15]. 



The main difference between SDVMT method and CM 
methods is in optimum usage of organization resources to 
deliver better services to applicants. More resources are 
possessed in the SDVMT method.  Parallel seeking in 
vacuums, and scalability of it that obtained from its distributed 
nature, make higher accountability for this method. If required 
resources of SDVMT method were not provided, the 
organization would have to use CM methods. In this situation, 
however some part of data will be kept inactive, there are 
more resources to return vacuums and maintain them online 
for organization[15]. 

For instance, consider a small hospital that has 20 
workstations with normal capabilities along with its online 
server. This hospital can use its workstations as servers for 
vacuums. These workstations always have some amount of 
computational capacity and free storage that can be used for 
storing and retrieving vacuums data. It is obvious that there 
are limitations concerning these resources, and after awhile the 
organization will need inactive storage. Therefore, optimum 
usage of resources that were costly for the organization, the 
severity of the problem and the number of inactive vacuums 
will reduce[15].  

In the SDVMT model, rather than lateral storage devices, 
data will be stored actively in some servers called vacuum 
servers. Vacuum servers are always slower and weaker than 
online server but they are much stronger than the manual 
supports methods. When a temporal query arrives, it is sent to 
the related vacuum server. Then the online server gathers and 
combines all results and answers the applicant[15].  

III. IVMT MODEL 

IVMT is the abbreviation of Intelligent Vacuuming Model 
on Temporal Databases. The goal of designing this model is to 
increase the performance of SDVMT model by directing more 
significant data to more powerful servers. As it is displayed in 

Fig. 2 this model has three types of intelligence.  Firstly, this 
system is intelligent concerning the user's behavior by 
checking the user's desired data. Secondly, the system logs the 
actions of the administrator for automatic migrating data. 
Thirdly, the system is intelligent about the changes that accrue 
in server performance. Server performance will change 
because of data traffic, hardware problems and operating 
system's fails. So this is very important in identifying which 
server is important at the time.  

In this model we suppose that we have a data atom. Data 
atom is the smallest significant data in system. Data atom may 
be a tuple. Data atoms have an integer variable that values 
increase by user visiting it. So the system will know which 
data is more important for users. As time passes, this variable 
decreases. This means that over time the importance of data 
decreases. Thus, only the newer data will have a high value in 
this variable and will demonstrate to be more important. Data 
atoms have two variables for saving the transaction time of 
data, as well as two variables to save the valid time of data. In 
this model the administrator can use a command to migrate 
data from a server to another server by organizational roles. 
Every server has an indicator that shows how powerful the 
server is. This indicator is based on network latency of node to 
the core, node processing usage and free memory in node. In 
time this indicator will refresh. 

Thus, the system knows about user's behavior, the level of 
power of the server and the behavior of the administrator. By 
using the neural network engine that is embedded in this 
model, the system learns the behavior of users and 
administrators. This model system also knows about the 
server's status. Thus some data will automatically migrate to 
other servers to increase performance. This model can uses 
some open source systems such as hyper table, Hadoop and 
Hbase to develop. But this paper is only considering 
introduction of this model. 

 

Figure 2.  IVMT model block diagram. The IVMT model has a middleware that composed of 

seven parts. These parts show in above diagram.  



A. IVMT Model details 

Temporal data have two temporal dimensions, valid time 
and transaction time [16]. The importance of each datum is 
determined by considering the final user's usage. In this paper, 
the smallest in frangible units of data is called data atom. With 
regard to the more applicable architecture of BCDM [17] [18], 
in temporal data models it can be assumed that a data tuple is a 
data atom.  Each data atom has a temporal information header 
for its data that consists of data valid interval, transaction 
interval and data significance. Data significance will be 
calculated regarding user's usage of that data. By retrieving 
data, its significance will increment by a unit, inserting a tuple 
add a unit to its significance and deletions increment it. Also 
by updating a tuple, its significance will increase a +1 unit. As 
time passes, for each interval distance equal to t, the data's 
importance will decrease by a unit. K is another parameter in 
the data header and it specifies the number of data usage to 
answer a user's question.  

It is assumed that temporal data are inputs of artificial 
neural network. Start valid time, valid time distance, start 
transaction time, transaction time distance and data 
importance are inputs of neural network. Stochastic Gradient 
Descent algorithm is used to train a neural network to support 
online training [19] [20]. As time passes, the data obtained 
from user behavior will be used for neural network inputs and 
it will be trained. In this supervised learning method, it is 
determined which data atoms are partnered in answering a 
user's question. In such a way, k is network's output and other 
parameters of data header are its inputs. In different time slices 
the system determines which data should be kept in the current 
server and which data should be transferred to other servers. 

With the aim of proving the viability of IVMT method's 
performance, first the model that is shown in Fig. 1 with three 
levels of servers must be considered. Then this model can be 
compared with memory hierarchy. It was practically proved 
that more applicable data should be maintained in quicker 
memories, so more applicable information will be maintained 
in the more powerful server in the IVMT method. 

B. Founding a server responsible for maintaining the data in 

IVMT model 

In this area we were faced with unsupervised learning. An 
index determined the amount of partnership of each data atom 
in answering a user's query which is obtained from the neural 
network. K stands for the algorithm used to cluster data to 
classes whose number is equal to the number of vacuum 
servers plus one [21] [22]. Each cluster's center can be 
calculated, therefore, the Gaussian distance of data that do not 
belong in a cluster from the cluster's center can be obtained. 
Data will be assigned to a cluster with minimum Gaussian 
distance and the responsible server for each datum will be 
obtained.  

IV. A COMPARISON BETWEEN SDVMT METHOD AND 

MEMORY HIERARCHY 

With the goal of proving the viability of a method's 
performance, first the model that is shown in Fig. 1 with three 

levels of servers will be considered. Then this model can be 
compared with memory hierarchy using Table I. It was 
practically proved that more applicable data should be 
maintained in quicker memories, so more applicable 
information will be maintained in the more powerful server in 
the method. The conclusion of this comparison is the 
superiority of IVMT model than SDVMT model.  

In the SDVMT method, users send their ordinary and 
temporal queries to the online server and wait to be answered. 
On the other hand, in memory hierarchy the operating system 
sends arithmetic queries and   retrieves information from 
RAM or Hard Disk to the central processing unit and wait to 
be serviced. The CPU will answer quickly to queries from its 
memory, but if the query needs to retrieve information from 
RAM memory or Hard Disk, the CPU will take some time to 
transfer information from them to its memory. This time will 
be referred to as transfer time. Also in the IVMT model, if a 
temporal query arrives, it needs an online server to gather data 
from the vacuum server or archive to process them. 

In the SDVMT method, vacuum servers make middle 
memories between online servers and archives to keep 
temporal data. In memory hierarchy, RAM acts as a middle 
memory between the CPU and the disk. Vacuum servers 
deliver services more quickly than archives, just as RAM in 
the memory hierarchy has a higher speed in accessing data 
than a disk. Considering cost, maintaining information on disk 
is less costly than on RAM. Additionally, vacuum servers are 
more costly than archives.  

In the SDVMT method, the archive has a high capacity to 
store data and is also less costly than other servers, but its 
swiftness in accessing data is less. In memory hierarchy, disk 
has more storage capacity to store information. Disk is a less 
expensive memory than other levels of memory in the 
hierarchy. With regard to cost, Disk is less expensive than 
other levels. 

The memory hierarchy has existed for a long time from the 
early usage of computer systems and its good performance has 
been proven practically. In this research, by using this proved 
feature, a method for responding to the queries was presented. 
With respect to the memory hierarchy, when a request for 
retrieving data is received, at first the data stored in processor 
memory, such as cache memory, is searched. Next, the data in 
the main memory will be searched and last, if there is failure 
in these steps, the data stored in the hard disk will be searched.  

In the SDVMT method, at first the data stored in the online 
server will be searched, then the data stored in vacuum servers 
will be searched and, finally, archived data will be chosen to 
search. Since, In terms of memory and speed of response for 
each of these sectors, the proposed model is equivalent to the 
memory hierarchy. The IVMT method, similar to the methods 
used by hierarchical memory in the computer systems, seems 
to have much better performance than a system that only 
worked with online server and archived data. These kinds of 
systems are similar to computer systems without the RAM 
memory that search a slow hard disk to answer each request. 
Consequently, this architecture slows down the system and is 
inefficient. 



TABLE I.  A COMPARISON BETWEEN SDVMT METHOD AND MEMORY HIERARCHY  

SDVMT Method Memory Hierarchy 

Dataset level Access 

Time 

Storage 

Capacity 

Cost Memory level Access 

Time 

Storage 

Capacity 

Cost 

Level 1 

Online Server 
Very High Very Low Very 

High 

SRAM, CACHE and 

Register 
Very High Very Low Very High 

Level 2 

 Vacuum Server 
High Low High DRAM&RAM 

 Memory 
High Low High 

Level 3 

Archive 
Very Low Very High Low Magnetic disk Medium High Medium 

An average of 

 Data volume 
About Exabyte and increase as time 

passed 

An average of 

 Data volume 
Some multiple of storage capacity 

 

Since from the early computerization memory hierarchy 
was used, viability of its performance is obvious and has been 
proven. Using the SDVMT method a schema like memory 
hierarchy approach can be considered as a solution for 
temporal database systems. Due to insufficient resources in the 
SDVMT model, efficiency will reduce again after some time. 
To resolve this problem, intelligence parameter was added to 
the SDVMT method. Therefore the powerful servers are 
responsible to store more important data. By using this 
method, the problem is resolved. 

V. CONCLUSIONS  

In this study, the CM methods for vacuuming data were 
reviewed. The SDVMT method improved CM methods by 
using existing idle resources in the organization but when 
there were insufficient amount of resources, its response to 
temporal queries decreased. In the CM models, there are two 
servers that will be named as active and inactive servers. Data 
that is stored in an active server, needs less service time but 
the other data stored in inactive servers needs more service 
time. Ordinary queries need active server's data while 
temporal queries need data from active and inactive servers. 
The result was that ordinary queries need less time to be 
served, but for some parts of the temporal queries that need 
data from inactive servers, more service time is required. The 
server which serves a user query in less time has better 
performance. Thus the CM model’s performance for ordinary 
queries is good but its performance concerning temporal 
queries with data on inactive servers is not satisfying.  

The IVMT method has three kinds of servers which 
include online server, vacuum servers and inactive servers. 
Online server response time is the least. Vacuum server 
response time is a lot more than online server but inactive 
servers have longer response time. In the IVMT method, more 
required data by the final users have more importance. In this 
method, more important data will be stored on the server with 
higher performance and vice versa. In this method, ordinary 
queries will be answered by the online server just as CM 
methods, and causes less service time and higher performance 
for the method in this case. Temporal queries should be 
answered by all three levels of servers. If the query needs data 
from the online server, service time will be the least and 
performance will be satisfying. When it needs data from 
vacuum servers, its response time is a little more but less than 

the online server. In this situation the performance of the 
model is less than the previous condition. As a result, this 
method performance in this case is good but just a little less 
than the online server situation. The third position occurs 
when the temporal query needs data from inactive servers. In 
this method it was assumed that more important data are 
stored in more efficient servers and user's requests need more 
important data. This important data are in more efficient 
servers so that in inactive servers there is a little important 
datum there, and for these rare data requests, performance is 
less. If the user needs less important data, inactive servers 
should be searched so the performance will decrease and the 
response time will increase. As it was illustrated, just for 
temporal query from unimportant data the performance is like 
CM models and for all other situation it works better.  

If data importance is increasing, firstly this method is like 
CM methods, but as time passes this unimportant data will be 
requested more often and its importance will be increased. At 
that point the data will transfer to vacuum servers with higher 
performance. After a period of time, the systems efficiency 
will increase. In summary, IVMT model is satisfactory in all 
conditions except for the temporal request for unimportant 
data. When these types of requests repeat, importance of data 
will modify. Therefore, by using the online learning method, 
after a period of time the performance increases.  In the end, 
its performance is weak concerning unimportant data requests. 

VI. FUTURE WORKS 

This paper just introduces a framework for manipulating 
vacuuming in temporal database. For developing this 
framework we can use some open source systems same as 
Hadoop and Hbase. Before the implementation of this 
framework we should implement the learning cores. In this 
core the main point is which feature should be selected.  Once 
the selection is made we can use a neural network to learn the 
network by using data originating from the administrator and 
user behaviors. We should then define the instruction sets that 
nodes in this network will use. 
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