
  

 

Abstract: A hybrid neuro-fuzzy model based on interval type-2 

fuzzy c-means clustering, MLP neural network and interval type-2 

fuzzy model is proposed for predicting the noisy forex market. To 

gain faster convergence for learning procedure, combination of 

back-resilient and back-propagation is used.  

Two EURUSD and USDCHF exchange rates from forex market 

are used for experiments. The model is tested for convergence speed 

and one day ahead prediction. It is also compared with its fuzzy 

c-means based type-1 equivalent and a FLANN based neuro-fuzzy 

system. The performance of proposed model in convergence speed 

and prediction accuracy is proved by experimental results. 
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INTRODUCTION 

 Prediction of exchange rates could be categorized into 

fundamental and technical analysis methods. The first is done 

by considering fundamental factors like inflation rates or 

unemployment rates. But for the second, historical data 

patterns are used for prediction. 

 However, because various parameters are forming the 

market, a trader deals with complex patterns. It is said that the 

nature of such market is chaotic and noisy. Even in some 

literatures, a prediction model seems to be like random walk 

model [1]. 

Statistical approaches like auto regression integrated 

moving average (ARIMA) [2] and subsequently adaptive 

techniques proposed [2], [3]. These methods work in the non 

stationary and less data situations but using linear structure 

gives them less forecasting performance. By using soft 

computing, more hopes came to this area of research [4]. In 

the last two decades, multilayer artificial neural networks [5], 

Psi Sigma Neural Network [6], fuzzy logic [7], genetic 

algorithms [8] and support vector machines [9] have been 

applied for exchange rates prediction. Also, some 

comprehensive surveys are made [10], [11] and all are agree 

in the idea that soft computing methods could handle 

nonlinear structure of financial markets. 

The nature of financial markets needs hybridization of 

various techniques. Until now, different hybrids like 

combination of computational intelligence with linear model 

[12], neuro-fuzzy with genetic algorithm [13], neuro-fuzzy 

with Kalman filtering [14], neuro-fuzzy with improved PSO 

[15], neuro-fuzzy with FLANN base network [16] are used. 

Artificial neural networks are good at learning patterns and 

adaptation to the variable environments and fuzzy models 

could handle uncertainty of the systems. So this hybrid is well 

for this environment.  

In this paper, we’ve proposed a new hybrid model for 

predicting foreign exchange rates. IT2 fuzzy is used for the 

fuzzy part of the system. IT2 fuzzy c-means is also used for 

clustering the data and finding center ranges within each 

dimension of data and using them for membership functions. 

Neural part of the system is an MLP network which makes 

consequent part of rules. For optimizing the parameters of the 

system, integration of back-resilient and simulated annealing 

is used.  

INTERVAL TYPE-2 FUZZY SYSTEM 

As mentioned earlier, fuzzy systems are good at handling 

uncertainties. A type-1 fuzzy system, assigns a crisp 

membership for an input value through a type-1 fuzzy set. But 

a membership function is not always precise enough to giving 

us crisp values. Sometimes, there would be uncertainties in 

the membership functions and the type-1 fuzzy system is 

unable to solve this problem.  

So, another kind of fuzzy system has been defined for 

handling membership function uncertainties and that is called 

Type-2 fuzzy system [17]. Although, this system solved the 

problem to high degree, but a newer problem has been raised 

with this system. The problem is computational complexity of 

such system would be very high. So, another model proposed 

to solve this earlier problem and that was interval Type-2 

fuzzy system [18] which proposed lower complex model.  

The inference system of a fuzzy model is composed of 

fuzzy rules which relate the inputs and outputs of the system. 

Following is a typical form of the rule n of a type-2 fuzzy 

system with one output: 
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In the above rule, xi (i = 1,…,m) represents the inputs to the 

fuzzy system and y is the output of it. For each input or output 

in a rule, a membership function is assigned to and here is 

represented by n
iX

~
for inputs and by nY

~
for output.     

We could use type-2 fuzzy sets in both antecedent and 

consequent sides of the rule or just using it in antecedent part. 

In [19], [20] some designing forms of type-2 fuzzy systems 

are mentioned. 
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Figure 1.  IT2FCM based neuro-fuzzy model

 

In this paper, interval type-2 fuzzy sets are used for 

antecedent parts and TSK type is used for consequent parts of 

rules. Also, parameters of the consequent parts are singletons. 

DEVELOPMENT OF PROPOSED MODEL 

 Development of a neuro-fuzzy system consists of finding 

the structure of it and optimizing the parameters included in 

the antecedent and consequent parts of each fuzzy rule. 

The structure of the proposed model has been shown in Figure 

1 and is described as follows: 

Layer 1 

 Each data point in the dataset consists of three indices. 

Closing price, %K and %D indices are used as inputs to this 

model. Layer 1 just distributes these inputs to the system.    

 

Layer 2 

For each input, membership degree should be determined. 

Because the model is IT2 fuzzy, type-2 Fuzzy sets are used 

and defined with Gaussian functions.  

 

 
Figure 2. Interval type-2 Gaussian function with uncertain mean 

 

Uncertainty in the Gaussian membership function could be 

defined with the uncertainty in the mean or in the STD of 

Gaussian function. Since considering uncertainty for both 

parameters could cause the parameter space very large, only 

mean uncertainty is assumed for this model. This kind of 

membership function could be described by two Gaussian 

functions and is shown in Figure 2. 

An interval is used as the membership value. The lower 

( )(x
ij

 ) and higher ( )(xij ) memberships from the input 

i=1,…,m to the rule j=1,…,n are calculated through the 

mentioned membership function in Figure 2 as follows: 
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and the Gaussian function is defined as: 
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Where the xi is the input to the Gaussian function and the cij 

and σij are the mean and STD of this function. Because we are 

using Gaussian function with uncertain mean, two version of 

mean exist; One is the lower mean (c1ij) and another is the 

higher mean (c2ij).  

Rather than initializing Gaussian function centers randomly, 

Interval Type-2 Fuzzy c-means is used for determining them 

in this paper. 

 



  

IT2 Fuzzy c-means  

The original FCM algorithm, is a clustering method which 

in it, each point in the data set could be assigned to multiple 

clusters with different degree of memberships [21], [22]. So, 

Clusters in this technique are not strictly separated. 

Calculating the membership degree of each pattern to a 

cluster is done with considering the distance among each 

pattern and cluster prototypes. The formulas are as follows: 
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In these formulas, uj(xi) denotes the membership degree of 

xi to cluster j. dij represents the distance of xi to cluster j’s 

prototype. k is the index for different clusters, c is number of 

clusters and m, m>1 is the fuzzifier of this method. The bigger 

value for m causes the more fuzziness for each cluster. cj 

denotes the prototype of cluster j and n is number of inputs. 

 Initializing each cluster prototype is random and the steps 

of the algorithm is done iteratively in order to reach the point 

where the accumulate change in cluster prototypes would be 

below a certain threshold.  

 This algorithm could be used in type-1 fuzzy models [22]. 

But in many applications selecting a precise m value is a 

difficult decision. For solving this problem, another FCM 

algorithm proposed by Hwang and Rhee which is called IT2 

Fuzzy c-means [23]. In this algorithm, IT2 fuzzy logic is used 

to handle the uncertainty caused by the value of m as a 

fuzzifier. So, instead of using just one m, an interval [m1, m2] 

is used for the fuzzifier value and the interval membership 

degree [ )( ij xu , )( ij xu ] of pattern xi to the cluster cj is 

calculated as follows: 
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In order to update the cluster prototypes, we should take into 

the account the intervals which are defined for membership 

degrees. The formula for calculating a cluster prototype could 

be defined as follows: 

 

 

 
















nxx Jxu
n

i

m
ij

n

i

m
iji

Jxu

R
j

L
jj

xu

xux
ccc

)(
1

1

)( 111

1],[~ 

       

(8)

 
 

This is a general formula and the m which is used in it will 

be switched based on corresponding membership that is used 

as following: Calculation of each dimension of the prototype 

will be done separately. First of all we’ve sorted data points in 

a dimension with relocating corresponding lower and higher 

membership degrees beside them. Then we’ve applied the 

Karnik-Mendel algorithm [24] to find the lower and higher 

center for that cluster in the calculated dimension.   

 The L
jc  and R

jc  centers which have been computed for a 

cluster are then used as the lower and higher thresholds for the 

means of corresponding membership function in neuro-fuzzy 

model. That is, the Gaussian function centers could fluctuate 

between these values. 

 

Layer 3 

In this layer the firing strength for each rule is calculated 

based on membership values coming from layer 2. There are 

two common t-norm functions used for this purpose. Min or 

prod are the choices and in this paper the prod t-norm is 

selected.  It is shown by * operator and for the rule n is 

computed like the following: 
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Layer 4 

Until now all layers made the antecedent parts of fuzzy 

rules. The next layers are going to make the consequent part 

of rules. In the layer 4, the computed output from the neural 

part of system (yj) is participated into the fuzzy part. This 

neural network is a MLP network with tangent hyperbolic as 

the activation function. Then yl and yr for a fuzzy system with 

N rules are calculated as follows: 
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The algorithm for this purpose is also the Karnik-Mendel [24] 

which was used earlier for calculating each cluster center. The 

parameters L and R are computed by this algorithm. This 

procedure is called type reduction. 

 

Layer 5 

The final step of this model is defuzzification, which is 

computed as follows in order to giving a crisp output:  
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The parameter λ which is used in this formula has values 

between 0 and 1. We’ve initialized this value with 0.5 and 

then submitted it to the learning procedure of the system for 

optimization.     



  

 

Optimizing the Parameters 

 After building the neuro-fuzzy model, it’s time to define the 

optimization method which is used in this network as the 

learning. First of all, the error function should be defined as 

target function to be optimized: 
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Where the ud is the ideal output and u is the actual output of 

the system. 

 In order to optimize the parameters, Back-Propagation 

(BP) algorithm is used for the fuzzy parameters and 

Back-Resilient (BR) algorithm [25] is used for learning the 

neural parameters. That’s because fuzzy parameters have 

more restricts and neural parameters have more freedom for 

changing. Using back-resilient, causes the learning of the 

network to a faster convergence. 

 For this purpose, the gradient of the error function should 

be calculated with respect to each parameter: 
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 This derivation is computed for different outputs (yj) from 

the neural part of the system. The parameter fjL is coefficient 

for the yj and fl is coefficient for different outputs of neural 

network used for calculating yl. Also, fjR and fl are coefficients 

used for computing yr.  
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It is important to note that left side of the sum in (21) is only 

involved when
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The parameters i and m are considered as different inputs 

into the system. Based on functions defined in (2a) and (2b), 

other derivations calculated as follows: 
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After calculating the gradients, updating are made to 

parameters as follows: 
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Where sη is the learning parameter used in 

back-propagation algorithm. These gradients are related to 

the fuzzy part of system. Because of constraints exit for 

updating them, slower learning is used for them. 

But as mentioned earlier, to gain faster convergence in the 

learning of the system, back-resilient technique is used for the 

neural part. For this purpose, gradients of the neural outputs 

(yj) are calculated and then these gradients are submitted to 

neural network for learning the weights with back-resilient. 

 

EXPRIMENTAL RESULTS 

Two forex datasets are used for training and testing 

experiments and all of them are obtained from Meta trader 5 

software. One of the datasets that is used is EURUSD 

exchange rate and another is USDCHF. %K and %D from 

Stochastic oscillator with Closing price are used as the inputs 

to the model. Definition for the Stochastic oscillator is a 

follows [26]: 
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 %D = 3-period moving average of %K       (39) 

 

C is the most recent closing price; L14 and H14 are the 

lowest and highest prices traded during previous 14 days 

period. 

The datasets are included with 2000 records, each for one 

separate day. The data is gathered from 1/4/2005 to 

10/12/2012. Eighty percent of these records are used for 

training and the rest are used as the testing data. 

In order to find relatively better number of clusters that 

could be used for clustering and as the number of rules, a test 

is made for different number of clusters. The MLP part of 

neuro-fuzzy system is made with one hidden layer contains 20 

neurons. 50 epochs are used for training and the results are 

shown in Table 1. For comparing the results, Mean Squared 

Error (MSE) is used. 

As can be seen in Table 1, the best result for EURUSD 

dataset is obtained when 7 rules is used and for USDCHF 

dataset, best result is achieved for 6 rules. So, for the next 

experiments these rule numbers are used. 

 
Table 1: Error for different number of rules for datasets 

Number of rules EURUSD MSE USDCHF MSE 

2 0.0142 0.0165 

3 0.0358 0.0297 

4 0.0032 0.0067 

5 0.0705 0.0031 

6 0.0061 0.0024 

7 0.0021 0.0107 

8 0.0039 0.0116 

 

Also, we’ve compared our proposed system with two other 

neuro-fuzzy systems. One is the type-1 implementation of 

made system (T1FCMFNS) which is a combination of fuzzy 

c-means based type-1 fuzzy system with MLP neural network. 

Another model is FLIT2FNS [16] and it is an IT2 fuzzy 

system without clustering combined with FLANN neural 

network 

In order to survey how fast these algorithms could be 

converging, we’ve compared them in a convergence test. 

Only 20 epochs is used for training. 

 

 
Figure 3. Convergence for EURUSD dataset. 

 

 
As it is shown in Figure 3 and Figure 4, even with few 



  

epochs used for training, the convergence bellow the 0.1 MSE 

will be occurring under 5 epochs. Also, in compare with other 

models, better results are obtained from proposed model 

(IT2FCMFNS). 

 In the next test, we’ve surveyed how close would be the 

results of three algorithms to the target values. For this test 

300 epochs are used for both datasets. The results from 

proposed model are more close to target price than others for 

both datasets. With IT2FCMFNS, fluctuations and 

uncertainties are better handled than its type-1 equivalent. 

MSE in Table 2 is also showing the point. 

  
Figure 4. Convergence for USDCHF dataset. 

 
  

 

 
Figure 5. EURUSD one day ahead prediction 

 

 

 
Figure 6. USDCHF one day ahead prediction

 
Table 2. MSE error for EURUSD and USDCHF 

        Model 

Dataset 
FLIT2FNS IT2FCMFNS T1FCMFNS 

EURUSD 0.03526 0.00167 0.0019 

USDCHF 0.04963 0.00121 0.01198 

  

CONCLUSION 

A neuro-fuzzy system which combined an IT2FCM based 

type-2 fuzzy model with a MLP neural network proposed to 

predict forex market exchange rates. Although this market has 

a noisy nature, experimental results have shown that the 

proposed combination could handle the fluctuations to a good 

degree of accuracy.  
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